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ABSTRACT ,i:
DDC

Consider independent random variables X11X2 ,... ,Xn, uniformly QUALITY

INSPECTED

distributed on unequal intervals (O,al), ai real, i = 1,2,...,n. Let

S = X1 + X2 + ... + Xn . The density of S is shown to be a linear

combination of ni B-splines with constant coefficients. A probabilistic

interpretation of the B-spline as the density of a linear combination of order

statistics from the uniform distribution on (0,1) is given. This

interpretation makes it possible to establish recurrence relations for

densities and moments of linear combinations of order statistics and to give

asymptotic results both for B-splines and linear combinations as well.

Examples and applications are also discussed.
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SIGNIFICANCE AND EXPLANATION

B-splines and linear combinations of order statistics play an important

role in the approximation of functions and statistics respectively. It is

useful to investigate the relation between the two subjects, both from the

theoretical and computational point of view.

B-splines on equidistant knots were viewed nondeterministically by I. J.

Schoenberg already in his first work on B-splines. Several studies on

distributions of sums of independent uniformly distributed random variables

have given formulae which in fact are easily seen to represent splines.

-However, a precise probabilistic interpretation of the B-spline seems not to

,* be explicitly stated in the literature.

7 It is shown her that the density of the sum of n independent random

variables uniformly distributed on unequal intervals is given by a linear

• .combination of ni B-splines with constant coefficients.

Another useful representation of the same density is given using

-' de Boor's definition of the discrete B-spline.

It is also shown that the B-spline is the density of a linear combination

of order statistics from the uniform distribution on (0,1). This interpre-

tation of the B-spline allows one to establish easily validity of recurrence

relations for densities and moments of linear combinations of order statistics

as well as to state limit theorems both for B-splines and linear combinations.

Examples given below illustrate how asymptotic results for B-splines may

be applied to linear combinations of order statistics. Using limit theorems

of probability theory two examples of Curry and Schoenberg (1966) for B-

splines are derived even in somewhat greater generality (see example 3)!

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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B-SPLINtS AND LINEAR COMBINATIONS OF UNIFORM ORDER STATISTICS

Z. G. Ignatov and V. K. Kaishev*

I *lttrofuction a" smafry.

Let X11 X2 ,1 . . ,Xn  be independent random variables and Xi be uniformly distributed

on the interval (O,a), ai > 0, 1 = 1,2,...,n. Let S - X1 + X2 + .. + Xn. An

expression for the density of S was found by Olds (1952), applying the convolution

formula for the density of a sum of two random variables and an induction argument.

Dempster and Kleyle (1968) have given a geometric derivation of the distribution of S
n

under the condition I Xi/a i ( 1 and have pointed out the relation of the latter to the

distribution of linear combinations of uniform order statistics on (0,1). The distribution

of such linear combinations of order statistics in more generality, covering the case of

zero terms in the linear combination has been obtained by Ali (1969) and Weisberg (1971).

Cicchitelli (1976) approached the same distributional problem by direct integration. A

related distribution was recently considered by Currie (1981).

In the present note the relation of the above mentioned distribution to polynomial

splines is emphasized. Theorem 2.1, Section 2 gives an exact representation of the density

of S as a linear combination of ni B-splines. The 8-spline Mn(XIX0,Xl,...,Xn)

introduced by Curry and Schoenberg (1966), of order n,

(degree n - 1) with knots x0 < x1 < .. < xn  is defined by the familiar divided

difference representation

n (x, - x)
n l

(1.1) Mn(X;X 0 ,X 1,...,X) n nj!O '(x)

where (x) - (x - xo)(x - x,) ... (x - Xn), (x)+ - max {x,O}

*This work was initiated at the Institute of Mathematics, Bulgarian Academy of Sciences and
completed while the second author was a participant in the scientific exchange program
between the National Academy of Sciences of United States and Bulgarian Academy of
Sciences.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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Let Z1 ,Z2 ,....Zn be independent uniformly distributed random variables on (0,1).

Let Z(1) ) Z(2) > ... Z(n) be the order statistics of ZIZ 2 ,...,Z n . It is shown in

Section 3, Lemma 3.1 that the B-spline coincides with the density of the linear

combination L = a Z( 1 ) + a2 Z(2 ) + ... + anZ(n)* Recurrence relations for densities of

linear combinations of order statistics and their moments are also given. In particular,

Lemma 3.2 of Section 3 gives a probabilistic analogue of the well known recurrent relation

for the univariate B-splines (c.f. de Boor (1972), Cox (1972)) in terms of densities of

linear combinations of order statistics. On the basis of Lemma 3.1 and the limit theorems

6 and 7 Section 5, of Curry and Schoenberg (1966) for the B-spline, two limit theorems for

the linear combination of the order statistics Z(1),Z(2 )...IZ(n) are stated (Section 4,

Theorems 4.1, 4.2). Theorem 4.3 of Section 4 gives a necessary and suficient condition for

convergence of the B-spline to 1/21 exp(-x2 /2) when n tends to infinity. Under this

condition, Theorem 4.4 states an expansion for f . Mn(tx0,...,Xn)dt. Both theorems 4.3

and 4.4 are easily obtained by correspondingly applying Lemma 3.1 to the results of Hecker

(1976) and van zwet (1979) for linear combinations of uniform order statistics.

In Section 5, examples and applications of the results of Section 3 and 4 are given.

They illustrate both the stochastic approach to studying asymptotic behavior of fundamental

spline-functions, and the use of spline theory techniques in probabilistic problems.
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2. B-splines and the distribution of S.

We first state the following Lemma which interprets the B-spline stochastically.

LEMMA 2.1.

The conditional density function fs(x/X1/a, ) X2/a 2 P ... ; Xn/an ) coincides Vx

with the B-spline Mn(xiIx0,x,°.•,Xn) having knots x0 = 0, xi = al, x2 = a, + a2 o...,

Xn = a, + a2 + ... + an .

PROOF.

As assumed above the random vector (X1 ,X2 1 ...,Xn ) is uniformly distributed in the n-

dimensional hypercube (,aI) x (O,a 2 ) x ... x (O,an) = 0. The random event

IxI/a 1  X2/a 2 > ... > Xn/a n} = a c 9 is an n-simplex denoted by a with vertices

(0,0,...,0), (al,0,0, ... , 0), (al,a 2 ,0,0,...,0), ..., (aia 2 ,...,an). Then the

probability of a is

n

P11 vol~a) nt i j

vol() n n!
T7 al

i-I

Now, by definition fs(x/X 1/a1 ) X2 /a2 > ... > Xn/a n )

p(x I + x(2 + •.. + Xn £ (x,x + h)) n (X,/a1 > X2/a 2 > Xn/an)}
h+O h PIX 1/a 1 > X2/a2  > . xn/a nJ

n1 lim vol (cL(x,x +h) n a)
n h
T a h+0
i=I

where a(x, x + h) = {(U,,U2 .**.un) u1 + U2 + "'" + un £ [x,x + hi}.

If the hyperplane ul + u2 + ... + un = x is denoted by a(x) then

lim vol(a(x, x + h) n a) 1 V
lim h VOlnjl(x) n a)h O

where voln I is the (n- 1) - dimensional volume.

-3-

.. . . . . .. . . . ..;...:.. ..%.:. -... ........:...........................o..........................,........

,.. , • %. . ,, ...... .... .......... ... ...... .... .-... .-.--

.. . . . . .. . ..%.



nt VOl n-(a(x) n a)

hus fs(X/XI/a ) X/&a 2  ... > X n/an) n nT ai /

i-1
n

Let us assume that vol(Q) - Y a1 - ni. Then
i-1

(2.1) fs(x/X 1 /a 1 I X 2 /a 2 > ... X/a n ) n - vol n(a(x) n 0)
/ n-

and vol(G) - 1. Now we can apply Theorem 2 of Curry and Schoenberg (1966) which states:

The fundamental spline function M, (xIx0 ,x1 ,...,xn) is the linear density function

obtained by projecting orthogonally onto the x-axis the volume of an n-dimensional simplex

a nt of volume unity, so located that its n + I vertices project orthogonally into the

points x0,xl,...,xn of the x-axis, respectively.

Let us project orthogonally the simplex 0 onto the g-axis with a parametric equation

u 1 = tI/t - u 2 = t//n ..... Un = t/vn I t c R. If the coordinate system 0,g is

introduced onto the g-axis so that the point (t/in , t/n, ..., t//n)e g has the

coordinate t then the orthogonal projection of the vertex A(alra 2...,aiO,0,...,0) of

the simplex a onto the g-axis will be the point Ai with the coordinate

(a, + a2 + ... + ai)//n , i = 1,2,...,n, with respect to 0,g. Then according to the

above theorem of Curry and Schoenberg

Vol n 1 (a(x) n a) = Mn(xIO, aV//n, (a1 + a2 )//n, .... (a1 + a2 .. + an)//)n)

Now from (1.1), setting a0 = 0 we have Voln-1(Q(x) n a)

n (Ca0 + a1 + ... + a.)/4?n- x//fl) -

i-a

i~j
S/n Mn(xI0,ai,a 1 + a2 .... .a1 + a2 +...+a n)

n

From (2.1) for the case +- a1i nI we have

i-1

fs(x/X1 /a 1  a ... Xn/a n ) - Mn(xg0,al,aI + a2 , ... a1 + a2 + ... + an).

-4-
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n
Let vol() - T a1 - k n n!, k > 0. By the simple transformation

1-

X, = Xid' d - , i - 1,2,...,n we obtain the set of random variables X' X2 ..... n

uniformly distributed on (O,bi), bi - aid, i - 1,2,...,n and such that

n
vol(A) - T7 b- n"

i-i

Then

(2.2) f-(x/X/b1 ; Xi/b 2  ; . X/bn) n
S

£n(x;O,biibI + b2 ,...,b I + b2 + ... + bn)

Changing back to the variables XlX 2 1 ...,X, on the left side of (2.2) and applying (1.1)

to the right side we have

fs(x/xl/a ) X2 /a2 ) ... ) Xn/an) =

% (xlO,a,,a, + a2 ,...,a1 + a2 + ... + an'

where x= 1 , proving the assertion of Lemma 2.1.

Remark: For clarity and simpler notation we have confined ourselves to the case ai >0,

i - 1,...,n. Since the divided difference (1.1) is a symmetric function of its arguments

ie., it is independent on the order of the points x0 ,xI,...,xn  in the argument list it

can be easily seen that the above Lemma is true for ai real.

We are now ready to prove

THEORZM 2.1.

Let X1 ,X2 1 ... Ixn  be independent random variables and xi be uniformly distributed

on the interval (0,ai), ai - real, i = 1,2,...,n. Let S =XI + X2 + ... + Xn .

Then

(2.3) f5 nX) n(x;0,ai1,a + a a + a + ... + a.
(i1 i2 ...in)c Q1 2 1 2 n

where Qn are the permutations of (1,2,...,n).

-5-
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PRIOOF •

fx) - P {X /a1  > Xi /a2 > ... > X i /a, I
(i I ,i2,...,i cQn 1 1 2 2 n n

f S(x/Xi I /ai I nP n a i /

--i f (x/X /a P X2/a > X /a

(ii 21.°in n 1 1 2 2 n n

1 - 1a (x;O,a ,a + + + ... + a
1 Ufi,2 ,.°..,i n) CQn 1 2' ... i 1 i2 n

by Lea 2.1.

Another interesting representation of f. (x) arises if the notion of discrete B-

splines as viewed by C. de Boor (1976) is assumed.

Let 0 < x, < ... < xn, a1 - xl,...,an = xn - xn I and T(i 1 ,...,in) -

1 0,ai ai I + ai 2'...'a I ... + ain } where (i,.,iin) c Qn" We shall also use the

notation T(i1,...,i n ) - ,i, i ),..., (I1 in) in which for the sake of

brevity we will further drop the second subscript and write 1T0 , . Tn1.
n

Let t - Itt 2 , .... t} p = 1 (n) be the strictly increasing sequence obtained by
i-0

ordering the set

toaia i + ai 2'... ai + ai2 + ... + ai,'*''ai + ai2 + ... + a, }

where (iI ... ij)c Cn, C n are the combinations of j from n, j - 1,...n.

The B-splines of order n for the knot sequence t are given by

14 W " n[ti.... ](" - i -1..... q, where [t 1 ... ti+nJ denotes a

n-th order divided difference and q - p-n.

Since n(x;O aipai2 + ai2'...,ail + ai + ... + ai) of (2.3) is also a spline

with knots t it can be represented as a linear combination of the B-splines Mi,nt(x),

-6-
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i = I,...q by the Curry-Schoenberg (1966) theorem (see p. 113). The non-negative

coefficients of such a linear combination termed by C. de Boor (1976) discrete B-splines

are defined as
(2.4) 8.n, I ' ' " . (i) = Cti.n-t.)[ j'(JI -+ + .-

,in),t n [Tj...,T j+n - t+ ) *+... ti+nl) +

Remark 1: When j = 0 we simply write 8n..ri 1  ),t

Remark 2: When n = 1, (2.4) reads

81,T(ii) = ti+ 1 -ti )[, ] ( -

where (TT - t, T r t
r + 0 , T r t.i

r 1

Thus the density fs(x) is expressed in terms of discrete B-splines as

(2.5) f (x) = q 8nt(i, , CM (x)
S n i_1 (i Q.. )c - 1 ",in -

Note that if tj C x C tj+ I ,j = n,...,q-1 then

f S (x) (i)M (x)
ij-n+1 (i ... ,i )cQ n 'i2 ' "'..i),t ant

1 n n

since other Mi,n,t(x)'s vanish identically. This means that the evaluation of fs(X)

for any x e [xo,xn] requires summation of no more than n of the q terms on the

righthand side of (2.5).

The discrete B-splines in (2.5) can be determined from the recurrence expression

S . ),ti) = a [,i,nlTj+n  ti+n-l)8j+l,n_1(i)

(2.6) + (ti+n I - Tj)j,n 1Ci)] , where

aj,i,n ' (ti+n - ti)/[(Tj+n - Tj)(ti+n-1 - ti

Remark: For a proof of (2.6) with differently normalized discrete B-splines see

Jia (1983).

-7-
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3. B-splines and order statistics.

We first state the following Lemma, providing a probabilistic interpretation of the B-

spline in terms of order statistics. It should be noted that this result easily follows

differentiating the distribution formula given by Dempster and Kleyle (1968) and Ali

(1969). For the sake of consistency with the rest of this note another proof is given

below.

LEMMA 3.1.

Let Z1 ,Z2 1 ... ,Zn  be n independent uniformly distributed on (0,1) random

variables and let Z(1 ) ) Z(2) >... )Z(n) be their order statistics. Let al,a2,...,a.

be fixed real numbers. Then the density of the linear combination L - a1Z(1 ) +

a2 Z(n) +...+ anZ(n) is fL(x) = Mn(x;0,al,aj+a 2,...,a 1+a2 +...+a n
)

PROOF.

From Lemma 2.1 we have

faIZl+a 2 Z2 +.°0+anZn(x / ZI > Z2 •...) Zn)

= Mn(x;O,aj,a1+a 2
,...,al+a 2+...+an)

It can be easily seen that

fa 1Z1+a 2z2+ ...+a nZn 
(x / Z Z 2 Zn)

lim P{(aIZ 1 +a2Z 2 +...+aZn e (x,x+h)) n (Z I  2 )...) Z )}

h$0 h P{Z 1  Z2 >...' Zn }

(3.1) = lia 2-j ... f 1 du1.°.dun  i J ... n! du .. ,du
)'+0 A1 n h+0 AnA n

1 2

where

a= {(uiu ... ,u l~u ' > x<alu1"a?2 *..+anun x+h)
Sn(UIu,...,U) : )U 2.. .Un .u1

A1 1 2n(UlU2,.°.,un  : 1 >U n0},

A2 = {(ulu 2 ,...,un) x<aIu 1 +a2 u2 +. ..+anun < x+h} 
r

-8-
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Denote

= 1I (UlU2,...Un) e 1I

0 (UlU 2 ....,un) A

Then (3.1) yields
I f"

(3.2) lim f... fA n1 du...dun
h+O A2

Since the density of the random vector (Z(1),Z(2 ),...,2(n)) is CA ni (c.f.

S. Karlin and H. Taylor, (1981), p. 102)

(3.3) f1 1-.f C ni dul...du h
h 2 1h

From (3.3) replacing in (3.2) we finally obtain

tim -g f .. n du du ...du

hi- nI C 1 2 n
h+O A2 1

2
(3.4)

P(alZ( 1)+a2 Z(2 )+...+anZ(n) e (x,x+h))
= lim h = f L(x)
h+0

Since the vector (Z(t),Z(2 ),.,**Z(n)) has a density, the random variable

a1 +a22+...+anZn) also has a density, denoted by fL~x) in (3.4). That completes

a( 1 )+a2 Z(2 )+ n (n)f~x

the proof of Lemma 3.1.

Remark 1: It can be easily seen by a linear transformation that if x0 < xI <...< Xn, a, =

xl-x 0 , a2 = x2 -xl,.... an - xn-Xn_1 and Z1 ,Z2 ,. Zn are independent random variables

uniformly distributed in the interval (xO/(xn-xO) I x0/(Xn-X0 ) + 1) then the linear

combination L = alZ +a Z +...+a Z has the density flx) = Mn(X;x0 ,X1 ....Xn).1(1) 2 (2)+ n (n) L-x nxx~l . x)L

Since Zi - Zi + x0/(xn-x0 ) , i = 1,2,...,n and Z = Z(i) + x0/(Xn)' i

f (x) - fL+x 0x) = Mn(X;XoXI*...,xn) holds.
L
Remark 2. If some ai, i - 1,...,n are zero i.e. the B-spline has multiple knots than the

above Lemma still holds. The righthand side of formula (1.1) must be replaced by the

expression for divided differences for multiple arguments (c.f. Shumaker (1981) p. 119).

For stable computation of fL(x) however the recurrence relations given next should be

-9-
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Application.

The circular serial correlation coefficient with lag A is given by

N _ N 2

AN - ( {(-X)(X J+A-X)/ (X
-
X)

2
JIl j=1

where XN4 j - Xi and A < sample size N.

It may be noted that the marginal density of ARN, in the case Xi. 1,...,N i.i.d.

N(0,1) and N-odd is given by the B-spline "n(X'ACIAC2,...,ACn+1I
, 

where

ACI " AC2 >...) ACn+1 are the distinct latent roots of the matrix of the quadratic form in

the numerator of (5.1), n+I - (N-I)/2. This follows differentiating and slightly

rewriting formula (1.1) of Dempster and Kleyle (1968) which gives the marginal distribution

of A%
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Let T2n =3/n (ZI, 2 n Z Z2n,2n) - i3n. Then, for the density of T2n we have

d_ P(/2 
X l
I 

+
"
' + x 2 n

n -2n < x) = fT 2n(x)
dxn

- Mn(x,-n /3-/n, (-n+l) /3/n, (-n+2) /3/n .... n /3/n)

Then according to the LCLT

lim up M n (x-n%/n,(-n+l)/-3/n, (-n+2)i'3/n ,.,n/-7in) - -L- exp(-_x2 0

EXAMPLE 5.

T Lk +2k -L Z+ 2 L z+ k 2 Z
2 2

2k 3 1,k- 2k 2k-2k -

(2k-3)(2k-1) Zk-l,2k-I ( )2k- Zk,2k-I +

+2k 2 +2k 2 2(2k-3)(2k-1) k+l,2k-i (2k-5)12k-3) k+2,2k-1 +13+ 2k 21.3 Z2k_-1,2k_1

Then, by Lema 3.1
f (x )  M 2k 2k 2k 2k 2k 2k

T2 k-I n 1 3 . . 2k-i 2-i 2k--3 ..... .-- )

and by Example 5 of Curry and Schoenberg (1966)

lim sup f T (x ) 1h 0 O0
k-m -<x< 2k- cosh x

EXAMPLE 6.
2k 2k 2k

Let T2k_1 - -2 log k + (L- + 2 log k) Z, 2  + k-i )Zk2k +
k 2k2k-1 - k k***- 2k 2k

-- -L k+2,2k1 + .(1 -)Z = -2 log k + 2(1 + log k)Zk2k.1 +1 I_________2__________

" k Z + 2k 1 2k ZThnbLem3.
2k k(k-1) k+1,2k-1 + (k-1)(k-2) Zk+2,2k-.I " 2-1 2k-1,2k-I  Then by Lemma 3.1

the density

k
2k 2k 2kfT_1(x) - Mkl(Xi-2 log k,..., -2 log k, kandT2k-i kk k-

lia sup f T (x) - exp(-exp(-x) - x) 0 
0

k-. -<x<- 2k-i

by Example 6 of Curry and Schoenberg (1966).
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Sexp(-x) ,x ;0 0

fT (x) converges uniformly to A(x) - (0

for x outside an arbitrarily small neighborhood of the point x 0.

EXAMPLE 3.

Let T2k-.l -Vk + 24k Zk,2k-..1 Then, by Lem 3.1

k k

(x) - M2k_ 1 (xi-Vk ..... -k ,

2k-I

converges uniformly for all real x to exp(-x 2 )/FW.

More generally, by a theorem of Mosteller (c.f. David (1981) p. 255) it is known that

if 0 < p < 1 and

Tn 1_ 1 _ _ Z npin'p(1-p) - [n],

then Tn converges weakly to the random variable T normally distributed with ET - 0

and DT - 1. Hence, by Lemma 3.1

n-[np) [npl+1

Nx Cn~u,_ !!2 ., .L , n(1-p) n(I-p) )du , 1 f x expC-u2 /2)du
n l-p np (1-p) 'p p(1-p) :2w

for every x e R1 .

EXAMPLE 4.

According to the local central limit theorem (LCLT) if Xn, n - 1,2,... are

independent with a common distribution F having mean 0 and variance 02  and if F has

a bounded density, then

IA- P(n-xp(x/22
lim cup ~~ixx 1 2--=

n -~C X<0 d nr

Let Xn - / (Zn - 1/2). Then

I , x ) 1/2i6

F(x) - x/V + 1/2 , -1/2/6 < x <1/26

0o x C -1/2 6

and the conditions of the LCLT hold with 02 1 1/2. Thus we have

X1+'" +X2n V+31
2n n (Zl,2n + zn,2n - "

-19-
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S. mamwem a"d appicationa.

The following examples illustrate how, on the basis of Lemma 3.*1,* providing a

probabilistic interpretation of the B-spline, asymptotic results f or B-splines (curry and

Schoenberg (1966), Section 9) may be applied to linear combinations of order statistics.

It is also shown (examples 3, 4) that using limit theorems of probability theory the

results of Curry and Schoenberg ( 1966) (examples 3, 4) can be derived, even in slightly

more generality (example 3).

As above, here )1, > .Z2 ) > "Zn is the order statistics from the uniform

distribution on (0,1).

EXAMPLE 1.

Let xo 4 x 1 < ... be a convergent sequence of reals with lim xn - B. Then the
n4dD

sequence of random variables Tn - x0 + Cxl-x 0 )Zi n + (x 2 -xi)Z2,n +.'+ (xn-xn..i)Zn~n

converges weakly to the constant B.

PROOF.

According to Lemma 3.1 and Lemma 6 of Curry and Schoenberg (1966) for the density

f Tn(XW of the random variable Tn we have

1*D fT (x)(1 + xs/(n+1)) -n-ix M n= (x)(1 + xs/(n+1)) 1 dx
n

nI

FT (I + x is/(n+l))
i=0

It can be easily seen that

lim, 1 -Ds
nr ( s i/(n+l))

Hence, by Lemm 4 of Curry and Schoenberg (1966) Tn converges weakly to 8 and

therefore Tn con verges to B in probability.

EXAMPLE 2.

Let Tn - nin Then, by Lemma 3.1 the density of the random variable Tn fn Wx

M'(x10,0,...,0,n) and hence, by Theorem 7 of Curry and Schoenberg

-18
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The remainder term in the last expansion is given by van Zvet (1979) to be typically

of order n- 312 .

We finally remark that the Berry-Essenn bound of Corollary 1 can be sharpened by means

of Corollary 2 to obtain

supi I. 0 ,, *..y )dt

n
*(x) g ' Yn/(n+)(..+2)}31 n -. €,/,(n+,)n+2)}]

j.0 j.0

-17-
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* .R% W. W7 7. L" 70 P. V7

Following van Zwet (1979) we develop the expansion of Theorem 4.4 for the special

cases m - 3 and m - 5. For m = 3 it reduces to a bound of Berry-Essenn type,

typically of order n-1/2.

COROLLARY 1.

There exists a constant C such that for every n - 1,2,... and every

n
a1(n),...,an(n) with I a.(n) 2 0,

n
sup f-L M (ty 0 ,n,Yl, n .. .,n)dt - O(x)f ( C IV jyn/.(n+l)(n+2)1 3

x j0 n

Let now m = 5. Define

F (x) W(x)- (x)t I  
) [y 3 /i(n+l)(n+2)33 . H2(x) +4 j=O H (x)

in

+ y /'n+,)(n+2113 W1 3 ()

j-0 j,n

n

1 L

COROLLARY 2.

There exists a constant C such that for every n = 1,2,... and every a1(n),...,an(n)

n
with I a'(n) $ 0,

sup [ LMn(t;YO.ny,l n ..... Yn~n )d t -

x

n-n)I ( C oly.n/.'(n+,)(n+2)I5Pn~x C= I y,n

Corollaries 1 and 2 follow by Lemma 3.1 and Corolaries I and 2 of van Zwet (1979).

-16-
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j,nCX) - %,n n OnX

n 2 1/2
W Cx) - V x)j-0 V x)1J,n J,n j , nJ.0

S n+2 - x){(n+l)(n+2) }"
/2

n (A+1n /(x) - - I w W - nj- n te n+2+x2J

It is easy to check that x)
2  1. For integer m ; 3 and real x and z, let

G (zx) - OW - #W1 H()* - 1 1 Wn(X)k
u~n k k3 k Ik -0 J

where denotes summation over all nonnegative integers V 3  ... 'V- with

u-i

1 ( ) (k-2)vk 4 m-3
k-3

THEORED 4.4.

For every integer a ) 3 there exists a constant C. such that for every n - 1,2, ...

and every a1(n),...,an(n) with E a2(n) ' 0,

sup Ix n(t'Y 0,n'yl,.. 'yn,n )dt"
x

n

°-,n(C x )'x) 1 CJ0 lyj'n/(n+') (n+2)1

Follows by Iemma 3.1 and the theorem of van Zwet (1979) establishing the Edgeworth

expansion for the distribution function of Tn.

Since we require the condition (4.4) to be fulfilled the remainder in the above

expansion tends to zero for every a ) 3 and for increasing m. The rates will depend of

course on the triangular array (aj(n)) related to the knots of the B-spline. The

remainder approximately behave as n- 1/2 (m-2) (see van Zwet (1979)).

-15-
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= xo - x()x J, j = 0,...,n

Since E a2(n) I 0 implies that a 2 0 0 the 's are well defined withSn Yj,nSarweldindwt

E Yj,n - 0 and I Y2,n = (n+l)(n+2).

THEORE 4.3.

in. &up n 1n'y1n'"'Yn n exp(-x 2/2) 0
n+ sup ,N (XYo, n, n., n  -

if and only if

(4.4) list [ max I Yj,n //(n+1)(n+2)1] - 0
n
-  

O~j~n

VIA=W.

Applying Lema 3.1 to the theorem of Hecker (1976) which gives a necessary and

sufficient condition for the asymptotic normality of the linear combination Tn - YO,n +

(yl,n-Y0,n*Z1,n + (y2,n-yl,n)Z2,n +.*.+ (yn,n-yn_1,n)Zn,n we easily obtain the assertion

of Theorem 4.3.

Under the condition (4.4) we shall derive an expansion for the spline distribution

function

* Mnl OY,n'yl,n ....yn,n~
d

using a theorem of van Zwet (1979).

Define

#(x) f (t)dt

#(x) exp(-x2 /2),

Hr - the hermits polynomial of degree r i.e. d-- " (-1)r#(x)H (x). For j 0,...,ndx r  r

and real x let

-14-
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TH U0MM 4.2.

Let the sequence of random variables = al(n)Z(1 ) + a2 (n)Z(2 ) +.''+

ann)Z(n)+an+lln) converge in distribution to a random variable with a distribution

function F(x), and lot

fe's dF(x) e6

Hence dF(x) - A(x)dx, where A(x) iS a Polya frequency function and

(4.3) lha fT (x) - Ax)

n" n

uniformly for all x provided that A(x) is not of the form (4.2). Here fT (x) denotes
n

the density function of the random variable Tn.

For A(x) = A0 (x), again (4.3) holds uniformly for x outside an arbitrarily small

neighborhood of the point x = 6-6•

If #(a) - exp(6s) as in case i) then

lis fTn(x) - 0

n+0

uniformly in x outside an arbitrarily small neighborhood of the point x = 6.

The proofs of Theorems 4.1 and 4.2 directly follow from theorems 6 and 7 of Curry and

Schoenberg (1966) respectively, applying Lemma 3.1.

We shall now use two theorems of asymptotic statistics to establish easily results for

B-splines.

Let a 1 (n),...,a(n) be a real sequence with XOn - 01 Xl n 0 alln), x2,n = al(n) +
n

a2ln),....,xn,n  al(n) +...+ an(n) and I a2(n) 0 0 for every n.
j-1

Define

n" 1 j,n

n -2

2 j-O j,n

n (n+l)(n+2)

-13-
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4. TAi t theorm.

Let us first state two limit theorems concerning linear combinations of order

statistics. For the purpose the class of Polya distribution functions F(x) will be

required. These are the distribution functions having a bilateral Laplace transform of the

form

(4.1) i e-SX dF(x) -1/(S) 

where *(s) - exp(-Ys2 + 6s) T (l+6is)exp(-6 s) , y)O, 6,6 real ,E 62 < (see Curry
i= i i ii-1

and Schoenberg (1966), p. 91).

THEOREM 4.1.

If [a1(n),a 2 (n),...,an(n),an+1(n)) is a sequence of constants such that the sequence

of linear combinations of order statistics a1 (n)Z( )+a2 (n)Z(2 )+• ..+an(n)Z(n)+a n+(n)

converges weakly to a random variable W with a distribution function 7(x), then F(x)

is a Polya distribution function. Conversely if W is a random variable with a Polya

distribution function F(x) then there exists an appropriate sequence of constants

al(n),a2 (n),...,an(n),an+1(n) such that al(n)Z(i )+a2 (n )Z(2 )+° .. +an(n)Z(n)+an+1 (n)

converges weakly to W.

It is known that exp(Ys 2 ) is the bilateral Laplace transform of the random

variable W normally distributed with EW = 0 and D(W) - 2y. Consequently a

(c.f. (4.1)) is the bilateral Laplace transform of the distribution of the sum of

independent random variables U 6 + /2yW + 61V - 61 + 62V 2 - '2+..' where Vi  is

exponentially distributed with EVi - 1, i = 1,2,... , W - N(0,1), and 6 real constant.

i) If 0 - y - 61 = 62 =.. then the bilateral Laplace transform of the random

variable U is f(s) - exp(6s) and no density function exists.

ii) If y = 0 and only one of the constants 6i  is nonzero, i - 1,2,... then the

random variable U has a density function

po exp(-(x-6+6 )/6i) (x-6+6 )/6 0 0(4.2) x i i

0  { elsewhere

which in discontinuous at the point x =6-6 i .

-12-
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A generalization of (3.5) is straightforward. Let t- {t0 ,.-.,t p }  be a non-

decreasing real sequence with ti < ti+n F ± - 0,...,p-n, {pO,...,n} be an increasing

integer sequence, and T = (Tj t P), j - 0,...,n, P0 = 0, On - p be a subsequence of t.

Let also a1 
- T -T0, a2 

= 
T2  TV *... an T n - Tn_ 1 and

b1 =t 1 - t0...,bP - tp - tpp i.e. a1,
= bl+...+b i 2 . bpl+1+...+bp 2 '.'.

an = b pnl+1+...+b Pn Then by the same argument as in deriving (2.5)

faZ
1,n +...+ anZn,n (X-T0 i

q

SX n,,t t(i-l)fb +...+b +b Z +. ..+b Z (x-T 0)
ii -- ,n i+n- nn

where q = p - n+1, 0 n,t(i-1) is the discrete B-spline given by (2.4).

Denote by )x(a1 Z1,n +...+ an Z n,n ) the L-th moment of the linear combination L -

a1Z1,n +...+ anZn,n, L = 0,1,... and assume the sequence x is strictly increasing. Then

the following recurrence formulae hold.

11 (aZl +...+ anZ
X I1,n n n ,n

(3.6) . n+L-I X x -n+-I

S n P I I1,n +n.+ an-IZn-1,n
)

~j.0

where the initial values are equal to

SalZl,1 (x j+1 - x+l )/[lJ+l)(x -x), (j 0,1, ...)

. lnn

J!()Jf xx~ ij_(aZ, +...+ aZ ) xx

(3.7) j1 mi Jn p 0

(p = 0,1,...,p < n)

n (n) (x-x )II (a Z1  +...+ a Z j n x p-

i Pm n- n

(3.8)-11-

, (p-.01,..,n1)

corresponding formulae for the moments of B-splinee (see Newman 1980).

-1%



4.

* used.

To emphasize the sample size n in the sequel, we shall also use the notation

ZI'n ) Z2,n JN...) Z for the order statistics of the sample Z1 ,Z2 ,...,Zn. Let x.=

{X0 ,xl,...,xn) be a non-decreasing real sequence with x0 < xn  and a, - xl-x 0 , a2 =

x2 -x1I .... an "X= n- 1 .

LEMA 3.2.

Let n ) 2,

f x-x r 0 (x-x)+
a Z +...+a Z 0 n-i -x a Z +...+a Z 0I ,n n n,n LnX0 11,n-1 n-i n-1,n-1

X -X
+ X n X f a +aZ +...+aZ (xxl n _

n 0~f 1 2 1,nI-1 n n-l,n-1

PROOF.

The proof follows immediately applying Lemma 3. 1 to the recurrence relation for stable

evaluation of B-splines (de Boor (1972), Cox (1972)).

Let t = {totli...,tn+1 I be a sequence obtained from x by addition of the point

t satisfying x.-1 4 t <C xV, 0 < v 4 n, n > 0. Let a, = t I - to, a 2 - t 2

t1,...,a v - tv - tv-l,...,a n+I m tn+ I - tn -

LEM 3. 3.

fa 1 ,n +...+ (a +aV+1)Zvn + aV+2ZV+l,n +-..+ an+IZn,n (X-t0

t -t 0
= tv f (x-t0) +

(3.5) tn+t0 aZn +...+ aVZvn + a V+IZV+,n +...+ anZ n,n 0

t -t

+ tn+1 tV (x-tt - fa1  a .. a +a Z +...+a Z x 0)

n+I 0 + 2 1,n V V- ,n V+1 V,n n+1 n,n

PROOF.

Follows by Lemma 3.1 and the fact that a B-spline on the grid x is a non-negative

* linear combination of B-splines on the refined grid t (see C. de Boor (1984), 12).
bd
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